
NOTATION 

y, axis of symmetry of the sprayer; r, distance from the axis of symmetry; 6, thick- 
ness of liquid film; s, coordinate measured along thesurface of the sprayer; n, coordinate 
measured along a normal to the sprayer surface; ~, azimuthal coordinate; u, v, w, corresponding 
components of the velocity vector; p, pressure; F, centrifugal force; R, radius of curvature 
of the sprayer surface; A E, element of the sprayer surface; 0, ang!e of inclination of the 
surface to the y axis; p, liquid density; Z, L, characteristic lengths; h, Lame coefficient; 
Eu, Euler number; A, ~, ~, similarity parameters; ~, stream function. 

LITERATURE CITED 

i. M.A. Gol'dshtik, Vortex Flows [in Russian], Nauka, Novosibirsk(1981). 
2. G.K. Batchelor, An Introductionto FluidDynamics, Cambridge Univ. Press (1967). 
3. N.C. Freeman, "On thetheory of hypersonic flow pastplane~and axially symmetric bluff 

bodies," J. Fluid Mech., i, Part 4, 366-387 (1956). 
4. G. G. Chernyi, Introduction to Hypersonic Flow, Academic Press, NewYork (1961). 
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and S. A. Haidanova 

UDC 536.24.01 

Expressions are obtained for the steady-state conductivity tensor for moderately 
concentratedheterogeneous materials with ellipsoidal inclusions. 

If the linear dimensionsof the mean temperature or concentration fields in a heterogene- 
ous medium (consisting of a ~homogeneousmatrix with discrete inclusions distributed in it) are 
significantly larger than the characteristic dimensions of the inclusions, then heat or mass 
transport is naturally describedin terms0fthe continuum approximation. In this case it 
is sufficient to introduce effecs thermal conductivities or diffusion coefficients for the 
medium as a whole [i, 2]. 

The determination ofthese effective coefficients fora mediumwith spherical inclusions 
has been considered ina number of papers, but the number of papers devoted to the analogous 
problem for a medium with nonspherical inclusions is quite small. A dilute dispersion of non- 
spherical inclusionswas considered in [3]. A moderately concentrated dispersion of spheroidal 
inclusions was studiedi n [4, 5] in the dipole approximation(where the contribution of each 
inclusion to the mean field is replaced hy that of a point dipole at the center of the given 
inclusion). In the present paper the general methods of [2] are used to analyze the proper- 
ties of aheterogeneous materialwith ellipsoidal inclusions. The spatial distribution of the 
ellipsoids is assumed to be random and their orientation is assumed to obey a given statistical 
distribution lawwhich is identicalforall points of space.~ Thenthe material is macro- 
scopically homogeneous, although itis not necessarily isotropic. Wenotethat this theory 
is important not only in. the description ofmaterials with inclusions, but also as a model 
for the analysis of transport processes in isotropic and an• polycrystalline media of 
more complicated structure [6, 7]. 

Statement of the Problem. In an anisotropic heterogeneous medium the relation between 
the mean heat flux and the gradient of the mean temperature has the form 

q .... ~V~, (1) 
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where % is a symmetric tensor of the second rank. In the special case when the sizes and 
shapes of all the ellipsoids are identical, this tensor can be found using the method of [2] 
from the relations [5] 

Z, - -  ~,ol --  (,X~ - -  ,~o) ,or, 

1 v.E(R)-- --V--- ~ .[ Vt~ (R + rlR) drtp(f2)df2, 
rcV 

(2) 

where ~ denotes the set of variables determining the orientation of an ellipsoid, and 
t~ (R+r I R) denotes the temperature inside an ellipsoid whose center is at the point R and 
whose orientation is characterized by ~, averaged over all physically allowed positions and 
orientations of all of the other inclusions. The integration with respectto dr goes over 
the volume V of an isolated (test)ellipsoid, and the orientational distribution function 
�9 (~) is normalized to unity. 

~ ~If the volume concentration of inclusions is not large, then the test ellipsoid can be 
considered, approximately, to be embedded in a fictitious medium, whose properties are the 
same as those of the original heterogeneous medium. This model of a moderately concentrated 
medium corresponds to,neglecting the fact that the ellipsoids cannot overlap [2, 4, 5]. In 
this case the field T~ can be determined from the solution of the pollowing problem for the 
test ellipsoid: 

V.(~ .VT' )  = O, r ~ V ;  At~  = 0 ,  r ~ V ;  

~'--*0, r - + ~ ;  ~ < c ~ ,  r=O; (3) 

E . r +  ~' = ~ ,  n.~.(E + V~')= ~ln.v~ ~, rCS. 

Here S and V are the surface and volume of an ellipsoid of a given orientation, whose center 
is chosen as the origin of coordinates (R = 0); n is a unit vector normal to S; ~'(r) is inter- 
preted as the perturbation of the linear mean temperature due to the test ellipsoid; the vector 
E is a constant vector defined at the center of the ellipsoid. The solution of the boundary- 
value problem (3)can be used to find the function ~$(R+rl R)=~$ (r), which depends on the 
components % as well as the parameters. Using this function in the integral of (2), we obtain 
a system of three transcendental equations for the three unknown principal values of the tensor 
%. In general the principal axes of this tensor do not coincide with the principal axes of the 
test ellipsoid, whose directions are characterized by the orientational variables ~. 

Temperature Field inside the Test Ellipsoid. The complete solution of (3), which is not 
difficult to obtain in ellipsoidal coordinates, is very complicated. However, the complete 
solution is not of primary interest in the context of the present paper; rather we need to 
find only the mean temperature gradient E*(~) = VT$ inside an ellipsoid of a given orientation. 
Therefore we employ certain well-known results directly, without solvingthe boundary-value 
problem in detail. 

We introduce theCartesian coordinates x, y, z taken along the principal axes of the tensor % and 
consider first a test ellipsoid whose principal axes are oriented along the coordinate axes. 
The semiaxes of the ellipsoid are denoted by a, b, and c. A uniform gradient of the mean 
temperature far from the ellipsoid can be represented as the vector sum Exex+Evey+Ezez , where 
the ei (i = x, y, z) are unit vectors, we consider separately the effect of each term in this 
sum on the field inside the ellipsoid. From symmetry considerations it is obvious that the 
field inside the ellipsoid excited by the external field Exex.r is such that its gradient is 
parallel toex, i.e., it can be represented in the form E~ex . In order to use the results of 
[8] we perform a scaling transformationof the coordinates, thereby transforming the operator 
V-(%.V) outside the ellipsoid into the operator LxA. It is important that the mean temperature 
gradient remain unchanged in the x direction after the scaling transformatiQn is performed. 
Hence the relation between the corresponding heat fluxes and gradients must remain invariant 
to the transformation. The transformation has the form 

x '  ~- x ,  y '  = ?vY,  z" = % z ,  "fv,z = ~ / ~ v , ~ "  

As a result of the transformation the ellipsoid is deformed and its new semiaxes are 
a'-~a, ~=?yb, c'-----u . Following the reasoning of [8], it can be shown that the vector 
field E~ is uniform and we thereby obtain 
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E* = %x Ex ' 

where n x is the corresponding eigenvalue of the depolarization tensor of the deformed ellip- 
soid, and depends not only on a, b, c, but also on the principal values %i of the tensor %. 

In a completely analogous way we can calculate the temperature gradient inside an ellip- 
soid excited by the external fields Euev.r and Ezez.r Here weuse transformations which 
leave the scale of the coordinates y or z unchanged, respectively. We then obtain the final 
expression for the temperature gradient inside the ellipsoid 

E* ~xEx kyfv k~E~ = ez, 
%x + (L1 --~x) nx ex @ k u -I- ( L 1  - -  ~y) ny ev -'[- k z + (l, -- ~z) nz (4) 

and n x, ny, nz are the eigenvalues of the depolarization tensors of different (but similar in 
shape) ellipsoids. Since these quantities depend only on the ratios of the semiaxes, arid not 
on the volume of the ellipsoid, they can be determined for a single ellipsold with principal 
semiaxes a w, b I, c v. 

The generalization to the caseof an ellipsoid whose principal axes X, Y, Z are oriented 
arbitrarily to the principal axes x, y, z~of~the tensor E is trivial. It is sufficient to 
represent the external temperature field in the form Exex+Eyey+Ezez and calculate the com- 
ponents of the temperature gradient inside the ellipsoid due to the three terms of this sum, 

using scaling transformations of the coordinates x, y, z which leave the scale unchanged in 
the direction of the axes X, Y, or Z, respectively. Then we again obtain a formula of the 
type (4), in which x, y, z is replaced by,X, u Z, and the quantities n i (i = X, Y, Z) depend 
in addition on the variables ~ (since theprincipal semiaxes of the ellipsoids deformed by 
the scaling transformations depend on ~). 

Using these results and (2), we can determine a system of equations for the principal 
values of effective thermal conductivity tensor in (i), for a disperse medium with an arbi- 
trary orientational distribution:function of inclusions. We consider in more detail the cases 
where all inclusions:are oriented in the samedirection, and where the orientation of the in- 
clusions is random. In the firstcasethemedium is anisotropic and its principal axes coin- 
cide with the principal axes of the ellipsoidal inclusions; in the second case the medium is 

isotropic. 

Material with Identically - O r i e n t e d  Inclusions. 
system of three equations for %x, %y, %z: 

~i  7 ko pki  

~1 - -LO ~i -JC (L1 - - : L i ) . f t i  "' 

Substituting (4) into (2), we obtain a 

i = x ,  y ,  z, (5) 

and the %i-dependent eigenvalues of the depolarization tensor are given in the form 

1 i a'b'c'dx 
n~ = - ~ -  (a; ~ + x ) i ( a  '~ + x)(t,'~ + x) (c  '~ + x)l '/2 

0 

{a} , ai = b' �9 
r (6) 

For a dilute medium we can assume, approximately, that %i = %0. In this case %i on the 
right side of (5) can be replaced by%0, and ni by the quantities n~, referred to the unde- 
formed ellipsoid with principal semiaxes a, b, c. Thenweobtain the result corresponding to 

the theory of [3] 

p (x --  1) ] k~ 
l i - - - ~ o  1 -{- l + ( z - - 1 ) n [  ' •  go ' 

where the n~ are obtained using formulas of the type (6). 

Equation (5) simplifies considerablyin the limiting cases ofperfectly conducting (< § 
~) and nonconducting (< = 0) inclusions. If we assume that the ratios of the semiaxes b/a and 

c/a are fixed then 
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Fig. i. Relative longitudinal conductivity of a medium with highly 
conducting needlelike inclusions as a function of s = b/a for p = 
0.01; solid curves: the solution (12); dashed curves: from (13); I) 

log K = 2; 2) log K = 3. 

Fig. 2. Relative transverse conductivity of a medium with highly 
conducting disklike inclusions as a function of ps with K/s = 0.5 
~) and 50 ~). Solid curves: the solution (15), dashed curves: (16). 

1--n~ 

( 7 )  

We consider in more detail amedium with inclusions in the form of spheroids, i.e., 
ellipsoids of rotation (b = c). In this case Xy = Xz, the system of equations for Xx and 
Xy coincide in form with (5), and in place of (6) we can write [8]: 

l - - e 2  ( lri 1 -4- e 
-f@-, i--~ 
Id-P 
7 (e -- arctg e), 

ny = n~ = 21-- (1 - -  nx), 

b l/I < 
2e , - - f -  - ~  1; 

-E >1; 

I 7~g 

(8) 

For a medium with spherical inclusions nx = ny = nz = 1/3 and from (5) we obtain the 
well-known equation for the effective scalar thermal conductivity of adisperse medium [9] 

k --- k o 3pL 

~'1-  ~o = "~ § 2>~ ' 

which is valid approximately for amedium with a moderate concentration of the dispersed 
phase. We note that this equationdiffers from the analogous result obtained in the dipole 
approximation [i0]. 

For a medium with needlelike inclusions (the limit s = b/a § 0 for finite K) we have 
nx § 0~ ny = nz § i/2 and it follows from (5) that 

~ - - ~  ~o [1 ~ p(• 1)1, 

~ = ~ - ~  (~ol2) ([(1 - -  2p)~(• - -  1) 2 + 4• ~/2 - -  (1 - -  2p) ( •  - -  1)}, 
(9) 

which is the same as the result of [ii] for heterogeneous materials with parallel cylindrical 
fibers. 

For a medium with disklike inclusions (the limit s = b/a § ~ for finite K) we 'have nx * 
i, ny = n z § 0 and it follows from (5) that 
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' )~.~--~ Lo [ 1 - - p ( 1  - -  • Ly = ~ - ~ o  [1 § p ( •  1)1, ( l O )  

which is an obvious result for a layered medium. 

Equations (9) and (i0) can become invalid if K or <-I goes to zero or infinitely more 
rapidly than s or s -I. We consider thesesingular cases in more detail. For a medium with 
highly conducting, elongated spheroidal inclusions s<<l and z>> i. Taking into account only 
the principal terms in the small-parameter expansion of (8),for such inclusions we obtain, 
approximately 

1 s 2 ~x In 1 ~ 1 ,  n u = n . ~ . . - - ~ - ,  ~ =  ~ .  nx ~" m -- ' 2 a ~v 

Using this in (5), we see that the transverse thermal conductivity is giVen by the second 
equation in (9) for all x, as before, and we obtain the following equation for the relative 
longitudinal thermal conductivity in the limit K>>I (here 8i = li/10): 

~ x - - l ~ "  P• , [3~,,~, 1 o~ 1 
- -  - - ,  m = In , 
[~x + • 1 -- 2 9 2 a (11) 

where the formula for 8y follows from (9) in the limit K § We see from (Ii) that the 
limiting relations for~x corresponding to equations (7) and (9) are obtained for • >>6 ~ and 
~m<<~ x, respectively. Therefore, it is not difficult to determine theregion of approximate 
validity of these relations in the parameterspace. In general, it follows from (ii) that 

~ x ~ l + p •  1--2p [ 1 ]}-t. - - •  ~ In l n ~  
2 (1--2p)s 2 

If p << i and also s -z >> Bx, then with logarithmic accuracy we have 

~ x ~ l - F p • 2 1 5  1 ) - l ' s  

The solution of equation (12) and theresult (13) are illustrated in Fig. i. 

We consider now a medium with highlyconducting disklike inclusions, when s>>l and 
< >>I. In this case'we have from (8) 

(12) 

(13) 

n~.~. 1 ~ 2m, n u = n~'~ m _ << 1, a =  . 
4> ~z ~'u 

The longitudinal thermalconductivity is expressed, as before, by the first equation of 
(i0) for all K, and in place of the second formula for < >>i we obtain the following equation 
for the relative transverse thermal conductivity: 

px~u 1 ~ v - - l ~  , ~ - - ,  m - - - -  
~u + • 1 -- p 4 V'~" 

(14) 

In the limits zm>>~y 
(7) and (i0). In the general case it follows from (14) that 

( ~• V~7--- P) -' �9 

If ~<< SV~.~ we have the result which follows from (I0); 
inequality) we have (if p << i) 

~ [ ( 1 ~  4s~p~) ' /2+ 2sp ] ~2 ~ '" 

and ~m<<~u we then obtain the limiting relations corresponding to 

(15) 

in the opposite case (strong 

(16) 

The quantities By as obtained from (15) and (16) are shown in Fig. 2. 

The transversethermal conductivity of a medium with poorly conducting disklike inclu- 
sions can be obtained from :(i0) in the limit • i, i.e., ~y~ 1--p �9 However, the longitudinal 
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Fig. 3. Relative longitudinal 
conductivity of a medium with 
poorly conducting disklike in- 
clusions as a function of ps 
from (17) and (18) (solid and 
dashed cu~es respectively) for 
log (Ks) = i (i) and 0 (2). 
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Fig. 4. Dependence of the quantities ~----(k~/k0--l) 
/8 (~----x, 9) on e=p/s~In(2/s} f o r  a medium 
with highly conducting needlelike inclusions for 
s = 0.0106, z>> i. Curves: calculated results 
from (7); points: the data of [13]. 

thermal conductivity of such a medium (in a direction perpendicular to the plane of the disks) 
can be found with the help of the solution of the equation 

f$~,~, 1 - - p s  -1/~ ~s -7- 41/-~-----~ P (17) 

and is given by the formula ~x~(1 + p/~)-i , following from (i0) only when ~s ~ ~x~ i. If 
we have instead the opposite strong inequality and also p ~ i, then from (17) we have 

[( 4s  i,2 ]2 
The solution (17) and equation (18)are illustrated in Fig. 3. 

These results suggest that highly nonspherical needlelike or diskiike spheroids with a 
high thermal conductivity can stronglyaffectthe effective longitudinal or transverse thermal 
conductivities of a heterogeneous medium with identically oriented inclusions, even if their 
volume concentration p is very small. Similarly, the presence of identically oriented non- 
conducting dislike inclusions can significantly decrease the thermalconductivity in the 
direction perpendicular to the plane of the disks, even when ~<< I. Indeed, it follows from 
the relations given above that the effective thermal conductivities ~x and By are pro- 
portional not to p itself, but to ps 2 (this is the volume concentration of spheres in the 
medium, where the radius of a sphere is equal to the larger of the two semiaxes of the 
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TABLE i. Relative Effective Thermal Conductivity of a 

Moderately Concentrated Medium with Randomly Oriented 
Spheroidal Inclusions 

nx=~ ] nx=~ I nx=~ 
P 

0,03 0.07 0.00 I 0,09 0.15 0,21 0,~2 ] 0,~8 0,24 
! 

0,01 0,97 0,93 0,91 [ 0,89 0,83 0,76 0,84 ] 0,77 0,64 
0,95 0,90 0,87 I 0,85 0,79 0,72 0,82 ~ 0,74 0,59 

100 1,15 
1,15 

1,43 
1,44 

1,62[ ,,as 
1,64 1,36 

1,75 
1,78 

2,46 
2,51 

1,77 { 2.71 
1,78 2;78 

2,79 
2,82 

Note: The upper rows of numbers are the results from 
(20) ; the lower rows are the results from the dipole 
approximation [4]. 

spheroid) or to p~ or p~-1 (for ~>> L:and~<< I, respectively). This fact has been noted 
earlier [3-5] and has been discussed in detail in [i]. A similar behavior is also character- 
istic for the effective viscosities of suspensions of needlelike particles undergoing 

straining flows [12]. 

The number of experiments measuring the effective conductivities of media with identi- 
cally oriented inclusions, and :subject to sufficiently controlled conditions, is not large. 
In Fig. 4 we compare the theory developed here and the experimental data of [13]. If we take 
into account that the experimental data is characterized by large dispersion, and the fact that 
the inclusions are really not spheroids, but wire fragments, many of:which are curved, we see 
that the correspondence between the theory and experiment~ can be considered to be satisfactory. 

Materials with Randomly Oriented Inclusions. In lthis case the material is not only 
macroscopically homogeneous, but also isotropic. Using (4) with Xx = %y = Xz = x and aver- 
aging over all equally probable orientations of the test ellipsoid, we obtain from (5) an 

equation for 

%-- X_____t = 9 , [  1 1 1 
~,x--ko 3 [ )~+(~'~--X)n'x' +- X-}-(Xx--X)n~ -~- X-~-(k~--X)n2 ' (19) 

where n i are the eigenvalues of the depolarization tensor for theundeformedellipsoid with 
semiaxes a,b, c, calculated from formulas analogous to (6). For a medium with spheroidal 
inclusions (b = c) this equationsimplifies considerably: 

- 4 ] X, (20)  5~ - -  X o _ P 1 + 2X -}- ( X l - -  ~)(1 n)~) 
xl - -  xo 3 x + (xl - -  x) n~ 

where n ~ can be found from (8) with Xx/%y = i. 
X 

From (19) and (20)it is not difficult to obtain the well-known expressions for the 
effective thermal conductivities of a dilute suspension with ellipsoidal inclusions and of 
a moderately concentrated material containing needlelike spheroidal particles. 

In the limiting cases of needlelike and disklike spheroids, we obtain from (20) 

equations replacing (9) and (i0): 

2 3 p (• - -  1) + 1 3 p (• - -  1)2 -t- 4• 1 -}- (• 1) n ~ --~0, 
(21) 

~-+Xo I + 9 ( ~ - - 1 )  1 - -  P 1--- , n2--,,-1. 
3 

In place of (7) we obtain for perfectly conducting and nonconducting spheroids in this case 
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n: + 1/3 t -1 
(22) 

9 (• 1) 5--3n~] 
s163 1+ V l_----n7 j,  • 

Some of the results following from (20) are collected in Table i where the corresponding 
results calculatedwith the dipole approximation [4] arealso shown. We see that overall 
the dipole approximation is completely satisfactory for computing the effective thermal 
conductivities of heterogeneous materials. 

As in thecase of a mediumwith identically oriented inclusions, a strong dependence of 
the effective thermal conductivities on the presence in the inclusions, even for very small 
concentrations, is also characteristic of a medium with randomly oriented inclusions. Since 
for a disperse medium with spherical particles, the model of a moderately concentrated medium 
(where the impenetrabilityof the particles is neglected) leads to satisfactory results up 
to0~O.20-0.25, in the case considered here, particularly for a random orientation of inclu- 
sions, one expects errors at smaLlervalues of the concentration. Similar results wereob- 
tained in [ii] for fibrouslmaterials as well. Therefore it is of considerable interest to 
develop the theory further, and take into account the actual distribution of the centers of 
the ellipsoids in the neighborhood of the test ellipsoid. 

According to the model~ of a moderately concentrated medium, the thermal conductivities 
for p = const depend upon the shapes and orientations of the inclusions, but not on their 
sizes. In this model the results obtained here can easily be extended to the case when there 
are inclusions of different shapes in the medium; to handle this problem it is sufficient to 
average (2) over the variables characterizing the shape of the ellipsoids, as well as over 
the orientational variable ~. 

In conclusion weemphasizethat in view of the equivalence of the mathematical formu- 
lation of the various transport problems for a test ellipsoid, the equations given above can 
be used directly to compute the steady-state effective coefficient of diffusion of the 
impurities inmediawithellipsoidalinclusions, andalso the effective electrical 
conductivities, dielectric permitivities, and magnetic susceptibilities of such materials. 
Our results for a medium with disklike inclusions can be used to determine the lumped 
component of the permeability of fissured-porous materials; this is an important problem in 
applications. In this sense, our results are a significant extension of those of [14], where 
the components of the effective interstitial permeability tensor were calculated. 

NOTATION 

a, b, c, Lengths of the semiaxes of the ellipsoids; e, defined in (8); ~ , unit vector; 
E, mean temperature gradient;l , unit tensor of the second rank; q , flux; n, unit vector 
normal to the surface of the test particle; m, defined in (ii); ni, principal values of the 
depolarization tensor of a test ellipsoid; S and V, its surface and volume; s, ratio of the 
semiaxes of the spheroid; ~i=%~/~;~=~/%x;% , thermal conductivity; w, tensor defined in (2); 
9, volume concentration of the dispersed phase; �9 , mean temperature; ~, characterizes the 
orientation of the ellipsoid; ~ (~), orientational distribution function of the ellipsoids; 
• ; ~ and ~', temperature inside the test ellipsoid andthe perturbation caused by it 
in the mean temperature; the subscripts 0 and i denote quantities referring to the matrix and 
inclusions, respectively. 
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MASS TRANSFER IN A SOLID PARTICLEWITH COMPETING REACTIONS WITH 

A MULTICOMPONENT GAS MIXTURE 

A. V. Kamennykh UDC 541.128 

A macrokinetic model of the transformation of a �9 particle, reacting with a 
multicomponent gas mixture, is constructed for arbitrary ratios between the 
rates of the mass-transfer stages of the transformation process (sorption, disso- 
lution, and diffusion of the~starting and final products). 

Processes for workingsoliddispersed materialswith�9 mixtures 
are widely used in modern technology. In the generalcase a macrokinetic �9 of the trans- 
formation of asolidparticle reacting~in the atmosphereof a gaseous mixture must take into 
account all elementary mass-transfer stages of the reaction:sorption--desorption of reagents 
and reaction products from both�9 and their dissolution and diffusion in the solid 
particle. Well-known theoretical studies [i, 2] usually presumethat there exists one limiting 
stage of mass transfer, whichis insufficientfor describing reactions of practical interest. 
The model o~the solid-phase transformation, constructed in [3, 4] and presuming that the 
rates of several stages are comparable, must be generalized to the�9 of the interaction 
of solid sphericalparticles with gaseous mixtures. Modeling such processes enables the 
calculation and optimization of different states as well as�9 intensification of the 
interaction of solid particles with the gas phase by increasingthe partial pressures of 
gaseous reagents or by changing the composition of the gaseous mixture. 

In studying a gas mixture we assume �9 we haveN gaseous reagents and that�9 - 
ly, N gaseous reaction products form. Under the assumptions made in [3, 4]�9 we assume that 
the chemical reaction involved in the interactionof the solid reagent with each gaseous 
reagent itself proceeds much more rapidly than the mass transfer processes, and the reaction 
front�9 separates the region of the starting reagent and the solid product of the reaction. 
Analogously to [3, 4] we shall formulate the equations of kinetics of all stages of the 
process. 

Defining S i and S~ as the relative�9 of the area of the surface layer filled with 
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